FOR IMMEDIATE RELEASE

WINN FELINE FOUNDATION AWARDS $214,017 IN ELEVEN GRANTS FOR FELINE HEALTH STUDIES

Wyckoff, NJ, April 12, 2017: Winn Feline Foundation is pleased to announce the award of eleven feline medical research grants funded through the generous support of private and corporate donations from around the world.

Winn Board President Glenn Olah, DVM, PhD, DABVP (Feline) stated, “Following a very thorough and rigorous review of 36 competitive proposals, we awarded $214,017 in grants for a diverse group of cat health studies examining the use of stem cells to treat feline diabetes, hepatic lipidosis, hypertrophic cardiomyopathy (HCM) and the potential role of stem cells in regulating T-cell activation and proliferation. In addition, Winn awarded grants investigating shelter cat adoption in families of children with autism, foraging behavior in confined cats, prolonged use of an antacid in cats, probiotic therapy for Tritrichomonas foetus, cryopreservation of feline red blood cells, biomarkers for FIP diagnosis, and potentially vaccinating against a virus causing lymphoma. Winn’s Grant Review Committee was impressed by the total quantity of proposals, the quality of the science proposed and the number of submissions from several countries around the world.”

Winn’s Ricky Fund is devoted to the funding of feline HCM and related heart disease research. Special recognition is due the sponsor, Ms. Holly Aglialoro, of this year’s Ricky Fund study in memory of her cat, Augustus. Winn also awards periodic support for cancer research through the Speckles Abdominal Cancer Fund. Kitty Kollar™ and owner Donna Garrou, in memory of her cat, Quasimodo, have provided key sponsorship for this year’s Speckles lymphoma study.

Winn awarded grants for the following research studies:

GENERAL STUDIES

Generating and using adult stem cells to treat feline diabetes. (W17-004)
Principal Investigator: Mandi Lopez DVM, MS, PhD, DACVS; Louisiana State University; $23,825.

This study attempts to show that stem cells can become pancreatic cells and function like insulin-producing natural cells. If so, it may be possible to cure diabetes in cats.

Evaluating new treatments for feline hepatic lipidosis. (W17-015)
Principal Investigators: Hedwig Kruitwagen, DVM, Bart Spee, PhD; Utrecht University, The Netherlands; $12,987.

This study uses a previously developed functional liver cell culture (called a “liver organoid”) to evaluate new treatments for feline hepatic lipidosis (FHL), a common and often fatal liver disease of cats, without the need for live animal testing.
Evaluating the prolonged use of an antacid, famotidine, in cats. (W17-017)
Principal Investigators: M. Katherine Tolbert, DVM, PhD, DACVIM, Adesola Odunayo, DVM, MS, DACVECC; The University of Tennessee College of Veterinary Medicine; $19,668.

Famotidine (Pepcid®), an antacid, is a commonly used medication in cats for various stomach ailments, but studies in other species show it may become ineffective if given daily over long periods of time. This study evaluates that possibility in cats and whether changing the dosage can prolong its effectiveness.

Evaluating the effect of probiotic therapy on feline *Tritrichomonas foetus* infection. (W17-018)
Principal Investigators: M. Katherine Tolbert, DVM, PhD, DACVIM, Rachel Dickson, DVM candidate; The University of Tennessee; Jody Gookin, DVM, PhD, DACVIM, North Carolina State; $17,864.

This study evaluates the role feline intestinal bacteria (probiotics) play in preventing infection with a protozoan (*T. foetus*) that causes chronic diarrhea in cats and is very difficult to treat. If successful, it may be possible to treat this disease with probiotics.

Mechanisms by which feline mesenchymal stem cells regulate T-cell activation and proliferation. (W17-026)
Principal Investigator: Dori Borjesson, DVM, PhD, DACVP; University of California-Davis, $13,000.

Stem cells derived from fat seem to have potent anti-inflammatory effects that have been successfully used to treat otherwise untreatable diseases in cats, but no one knows why. This study investigates how this occurs, which may identify other diseases that could benefit from this intriguing therapy.

Cryopreservation of feline red blood cells for transfusions using different solutions. (W17-030)
Principal Investigators: Marcelle Hon, MS, DVM, Elizabeth Thomovsky, DVM, MS, DACVECC; Purdue University; $11,666.

Currently, feline blood can only be stored refrigerated for one month, making it difficult to stock for transfusions. This study evaluates the effect of freezing with the use of glycerol and hydroxyethyl starch solutions on red blood cells of cats, as commonly done in human blood banks, which could extend its shelf life for several years.

Shelter cat adoption in families of children with autism. (W17-031)
Principal Investigators: Gretchen Carlisle, PhD, Rebecca Johnson, PhD; University of Missouri; $24,996.

It is widely thought that companion animals, such as cats, benefit children with autism, but definitive studies are lacking. This study quantifies the effects and benefits of cat ownership on autistic children as well as evaluates the degree of stress on these cats.

Foraging behavior under threat and enrichment in confined cats. (W17-033)
Principal Investigators: Melissa Bain, DVM, DACVB, DACAW, Tony Buffington, DVM, PhD, DACVN; University of California-Davis; $24,780.

Cats who live indoors lack opportunity to hunt and eat naturally. This study evaluates these effects on indoor cats and whether enriching their environment and using food puzzles to stimulate hunting behavior are of benefit to their behavioral and physical health.
BRIA FUND STUDY

Analysis of plasma to identify biomarkers for the diagnosis and prognosis of FIP. (W17-021)
Principal Investigators: Gregg Dean, DVM, PhD, DACVP, Kelly Santangelo, DVM, PhD, DACVP; Colorado State University; $25,000.

Feline infectious peritonitis (FIP) is a fatal disease of cats that causes vague symptoms and currently defies diagnosis. This study uses a novel approach to develop a simple test using plasma biomarkers for this devastating disease.

RICKY FUND STUDY (SPONSORED BY HOLLY AGLIALORO IN MEMORY OF AUGUSTUS)

Growing heart muscle cells in a dish in the lab to test HCM treatments. (W17-008)
Principal Investigators: David Connolly; The Royal Veterinary College; Debbie Guest; The Animal Health Trust; Cesare Terracciano, Imperial College London; $17,158.

Feline hypertrophic cardiomyopathy (HCM) is the most common heart disease of cats. This study is one of the first attempts to grow heart muscle cells in the lab. This will enable testing of many new drugs to stop progression of this disease without using live animals.

SPECKLES ABDOMINAL CANCER STUDY (SPONSORED BY KITTY KOLLAR™ IN MEMORY OF QUASIMODO)

A viral gene expression analysis towards preventing feline lymphoma. (W17-011)
Principal Investigators: Julia Beatty, PhD, Mahdis Aghazadeh, PhD, Vanessa Barrs, PhD; University of Sydney; $23,073.

A virus (Felis catus gammaherpesvirus 1 or FcaGHV1) that can cause cancer (lymphoma) in other species has been recently discovered in cats. This study looks for the presence of this virus in feline lymphoma cells. If found, it may be possible to prevent lymphoma by vaccination.

Sponsorship is easy! Simply pick one of the projects below seeking sponsors ($250 minimum donation). Go to our website http://www.winnfelinefoundation.org for more information on the project and to make your sponsorship donation online or download a donation form to mail to: 637 Wyckoff Ave., Suite 336, Wyckoff NJ 07481.

W17-011: Preventing gammaherpesvirus1 and lymphoma in cats
W17-021: Plasma analysis to identify biomarkers for the diagnosis and prognosis of FIP
W17-031: Shelter cat adoption in families of children with autism

Winn Feline Foundation is a non-profit organization established in 1968 that supports studies to improve cat health. Since 1968, the Winn Feline Foundation has funded almost $6 million in health research for cats at more than 30 partner institutions world-wide. For further information, go to www.winnfelinefoundation.org.